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The Spatial Dependence of Spin and Charge Correlations in a One-Dimensional,
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Los Alamos, NM 87545, USA

1. Introduction

Recent advances
trons have made
spin and charge
hamiltonian for

in Monte Carlo algorithms for systems of interacting elec-
possible the detailed study of the spatial dependence of
correlations in the Anderson single impurity model. The
this model [1]

*+
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(1)

has a non-degenerate impurity state with energy cd hybridized with strength

‘kd to energy states Ck of some conductio~ band. In addition it has a

Coulomb interaction U between electrons with oppositely paired spins that
try to occupy the impurity state,

As a function of interaction parameters and temperature, the model exhibits
a variety of interesting many-body phenomena [2,3]. One of these phenomena
is the existence of a local magnet moment at the impurity and the compensa-
tion of this moment by a spin cloud that leaves the system in a singlet state
asT+O, Prior to recent Monte Carlo simulations the structure of this spin
compensation cloud was accessible only through perturbative tb?ories that
lead to somewhat controversial or incomplete results [4].

In investigations o! the spatial dependence of this spin compensation,
the first [5] of a series of Monte Carlo studies folind RKKY and Friedel-like
oscillations with a strong negative (anti ferromagnetic) correlation between
electrons at the impurity site and those at the lattice sit~ with which it
interacts, With a wave number of 2k , these oscillations alternated in
sign and decreased in amplitude as tke distance from the impurity site
increased. The principal limitation of this study was its inability to
probe temperatures well below the Kondo temperature T , Subsequently

!proposed was another approach [6] that reached thcss ow temperatures, at
the expense of losing the information about the spatial dependence of
correlations, and had the additional advantage of embedding the impurity in
an infinite system, The most recent study [7] showed within this new
approach how to ~’ecover the spatial dependence and presented low temperature
r~sults that had several surprising features,



Perhaps the most surprising feature was the possible extension of the
spin compensation cloud to distances beyond the apparent natural length
v /T , where v is the fermi velocity. If the compensation in physical
s~st~ms is thi~ long-ranged, then the single impurity results would most
likely have applicability only to very dilute alloys, and the quantitative
comparison between theory and experiment, notwithstanding the neglect of
orbital degeneracy, would be difficult, Along with a closer examination of
this possible long-ranged correlation, several other interesting features
were found that await a clearer understanding. These novel features in-
cluded a non-monotonic variatior? of the lattice site to impurity site spin
correlation as a function of the Coulomb interaction.

The princip~,l purpose of this short note is to present corroborative
results for most of these features. A secondary purpose is to highlight
several additional systematic, but small, features that become apparent by
going to lower temperatures. Whereas the original study assumed the compu-
tationally convenient model of the conduction band as a broad flat density
of states and a free-electron dispersion, here we assume a one-dimensional,
tight-binding band

‘k = - ~ COS k . (2)

In the next section we surrnnarizethe Monte Carlo procedure. Then in the
third section we present the results of our calculation. In the fourth and
final section we summarize our findings and connnent on further applications
of the procedure to the study of quantum many body phenomena,

2, Procedure

The procedure we use is tnat of [7] and starts with a discrete, path integral
approach [8] to the evaluation of the partition function in which the tempera-
ture axis is divided into L steps of size r = @/L. At each step the Trotter
approximation is made

(3)

and then the interaction term in the hamiltonian is eliminated by intro-
ducing auxiliary Ising variables Ug [9], one for each step,

%

with cosh TJ = exp(-rU/2), After this transformation the partition function
becomes

z = TrU exp(-z Tr Bn gs[u])
s

(4)

where the matrix gs[a] is the equal-time thermodynamic Green’s function whose
elements ar~ defined by

(5)



The Monte Carlo part of the procedure perf~rms the trace over the u config-
urations and consists of successively flipping the u and accepting or re-
jecting the flip on the basis of whether the qu;~ntit$ lV(l+R) is greater
than or less than a random number between O and 1 [5]. R is the ratio of
the partition function for the new configuratiorl to partition function for
the old configuration and equals R~R& with

R~ = (1 + (1 - g~d(~~))(~~(fl) - lj (6)

where A:(2) is the change in energy caused by the change in the field.

As pointed out by Hirsch and Fye [6], within the Trotte\* approximation
there is a general relation between the spatial and time el,?ments of the
Green’s functions for two u configurations differing at time step Q“. For
each component of electron spin

g;j(2;?’) = 9ij(gQ’) + (6. 6Id JZf”- gid(ll”))

x (Ad(t”) - 1) g~J(g’’2’) (7)

In our Monte Carlo procedure we use this relation for three differ~?nt pur-
poses [7], First to initialize the calculation, we chose the u randomly.
Having comput~d the gdd(!2Q’) for the non-interacting problem, w~ use (7)

iteratively to turn on the u one at a time at each step of the integration
to obtain g~d(i~’) for the c~mplete configuration: With the unperturbed

gdd(~~’) we use (7) to find g~d(~~’) for sys~emwith just al’ We then ~lse

this a gdd(fl~’) ~’nthe right side of (7) to find g~d(gf’) for a system with

al and U2. We c~l’tinue turning on the spins this way until we construct t!~e

Green’s function for all the spin variables. With the gdd(l!l’) ws can begin

the Monte Carlo steps and evaluate (6), If we accept the flip, we use (7)
again to compute th~?gdd(!lfl)for the new configuration [10],

(8)

The third use of (5) is to recover the spatial information about the
Green’s functions, since only the impurity elements g (22’) are the natural
product from the Monte CNrlo steps, l%!Here we are inte steal in determining

gdj(LL)$ 9id(LL) and gij(LL). From (7) we have

g&d(LQ’ ) = gdd(L~’) + (~~~~11- gcjd(~’’))(Ad(~”) - l)g~d(l’’fl’) (9a)

g&j(L1’) ❑ gdj(L~’ ) + (6L~l,- ~dd(~l’’))(Ad(l”) - l)g~j(~”~’ ) (9b)

where j is a lattice site, We uf,e (9) the same way as we used (7) to get
gdd(22”): Starting with the Ilon-interacting Green’s functions g (Li’) arid
9 (L~’), we iterate (9) and at each step turn-on a new spin unt?! g~j(LA’)
fg$ the given configuration is constructed,

TO find g (LL) andgi (LL), we use a similar procedure except we rewrite
(7) by inter~~anging the {abe’ls of the old and new configurations



x (@” ) - 1) gdj(m’ ) (lo)

This leads to

9\d(LL) = gid(LL) + g~d(~’’ )(A~l(~’’l)gdd(~”L)L) (ha)

g~j(LL) = gij(LL) + g\d(U’’)(~~l(Q’’l)gdd(Q”L)L) (llb)

with i and j being lattice sites. Hence starting with g&d(LL) and 9~d(LL)

found from equation (8) and with the non-interacting gdj(LL) and gij(LL),

we use the iteration-turn-on technique to find g~j(LL) and g\j(LL). An

inlportant point to appreciate about the procedures just outlined is we
can start with the Green’s function for an infinite, non-interacting system
and obtain the Green’s function of the infinite interacting svstem at a
finite number of states of our choosing.

With the Green’s functions one can compute
quantities of interest. In this paper we are
impurity susceptibility

the impurity moment

‘d
= <(ud(L))2>

-.

the thermodynamics
mainly interested in the

(12a)

(12b)

and the correlation between the spin at the impurity and the spin at
lattice sites

S(i) = <Od(L)Ui(L)> (12C)

where ~d = ndt - nd+ and cri= ni~ - n
id”

The averages over the products of these spins are related to the Green’s
functions by use of Wick’s theorem, The application of Wick’s theorem
simplifies somewhat because the introduction of the auxiliary fields leaves
ths Green’s function in a representation block-diagonal in the electron spin.
As an example, we can express (12c) as

‘)>- ‘&&+&!&>s(i) = ‘(!&-!&#!&fjii (13)

where the average is over a corlfigurations,

We will also present results showing the nature of charge compensation.
Defining nd = n ‘n and ni = ni~+ni&, we have the following quantities in
analogy to equa00ndt12):

P
Tfld= (lda)j’ dt<nd(t)nd(L)>

o

cd
= c(nd(L))2> (14b)



C(i) = <rid(L) ni(L)> - <nd(L)><ni (L)> (14C)

To compute the averages over the o configurations, we generate 1024
configurations to equilibrate the system, and then generate an additional
5120 configurations from which we compute the averages. These additional
configurations are split into 20 groups on which we do coarse grain-
averaging and obtain estimates of statistical error [11]. In general, our
statistical error is no more than several percent and is larger than error
we make using the Trotter approximation. This latter error limits the
accuracy of our Green’s functions to about the fourth decimal place and is
noticeable only at low temperatures when some of our measured quantities
become comparably sized.

3. Results

Here we report results for the particle-hole symmetric case where c = -U/2
and <n > = 1. For all our calculations T = fl0,25, and the fermi ene yy

P =O. dAt T=U= O this choice of p corresponds to a half-filled band.

We considered cases for V = 1 and l/~2, so that at U = O the full width of

the impurity resonance, 2r = ‘pFv ,2 is 1 and 1/2. For r = 1/2, we computed

cases for U = 1/4, 1/2, 1, 2, 3, and 4; for r = 1/4, U =0, 1, 2, 4. A
summary of our results will now be given,

Three-dimensional plots of the spatial and temperature dependence of the
spin-correlation (12c) and charge correlation (14c) functions for U = O and
2 are ~hown in Fig. 1. Apart from the overall scale, the two U cases are
remarkably similar: There is a strong negative correlation between the
impurity and the central lattice site, and the amplitude decreases as it
spreads to other sites in the lattice. For p < 10 nnly a few nearest
neighbors are correlated to the impurity, while for ~ < 10, the correlation
spreads more rapidly outward and the amplitudes at the impurity and the
closest neighbors are becoming somewhat independent of p.

To see specific effects of IJ# O on these correlations, we have to take
a closer look at their U and p dependence. We find the principal effect of
U # O is the induction of ferromagnetic spin correlations at the sites
between the antiferromagnetically correlated sites. These correlations
increase with increasing U. On the other hand, the correlations at the
antiferromagnetic sites are often supr~ssed if U becomes large enough. The
number of sites at which this suppression occurs is reduced to just the
irfwrity site If (1 is well above p . The importance of being at low tem-
peratures to reduce the suppression~ of the anti ferromagnetic correlations
was underscored by comparing the results for r = 1/2 and 1/4. For most our
U values the lower r pushes p outside the range of our simulation and the

[suppression then occurs at mo t of antiferromagnetic sites studied.

The Coulomb interaction also induces a negative charge correlation at
sites where the ferromagnetic spin correlation was induced. These correla-
tions show a non-monotonic variation with U -- first increasing, then de-
creasing, The correlations at the anti ferromagnetically correlated spin
sites are suppressed as U is increased, We note that our charge correla-
tion function (14c) differs from that discussed in [7] since at each site
we subtract from <n n > the decorrelated value <n ><n ~ for that site as

Piopposed to the deco r Iated valued for a site inf?nit~ly far away, The
definition also allows (16), dafined below, to express charge conversation
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Fig 1 On the top row is the spin and charge correlation functions for ‘J= 1
and U = O as a function of position and ~, On the bottom row are the same
correlation functions but with U = 2.

at T =0 as Tll + 1 for the symmetric model and makes S(i) =C(i) for U= O
tas can be seen rom Fig. 1. Hence the U = 2 plots in this figure dramatizes

the different consequences a non-zero interaction has on tha spin and charge
correlations. Overall increasing U enhances spin correlations and suppresses
charge correlat~ut specific details show a range of behavior, Some of
the behaviur just summarized is illustrated in Fig. 2, We point out that
most of the effects are quite small,

For a given U, the effect of increasing p is to increase the antiferro-
magnetic spin correlations. At large P the rate of increase slows to the
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Fig. 2 Variation of the spin and charge correlations as a function of pos-
ition and U. The solid lines connect the values of the function at odd
lattice sites, which include the Impurity site, and the dashed lines, the
even sites. For the spin correlation the upper line of each type corre-
sponds to U = 4. For the charge correlations, the lowest solid line corre-
sponds to U = 0, while lowest dashed line corresponds to U s O. Plotted
are cases for U = O, 1, 2, 3, and 4.

point where in some cases the correlations at the impurity and several
nearby sites appear to be saturating. On the other hand, the ferromagnetic
spin correlations at first Increase and then become suppressed as ~ is
increased. Only for @ above p do the trends become most apparent. The

fcharge correlations behave slm larly. Some of this behavior Is depicted in
Fig. 3. Again the ●ffects are generally small,

In [7] the following sum rule, representing the spin compensation in the
ssme spirit as the Clogston-Anderson compensation theorem [12], was found tO
hold

z-d(L) U1(L)> = TXd - <Ud(L)2>
1

(15)

Me also ?Ind this relation to hold, as well as the analogous relatlon for
charge cmpensatlon

~<nd(L) n,(L)> ‘Tfld- <nd(L)2>
1

(16)

At low temperatures we find the correlation functions to decay as i-a. For
the spin compensation sum rule to hold, we had to correct the SM over 1 < f ~
1201 by fittj~g the ferromagnetic and antfferromagnetic peaks seParatelY~o
the form A 1 and then summing the resulting expression over a large number
of additional sites. For charge compensation this procodure, for all prac-
tlcle purposes, was unnecas~ary. At high te~eratures WQ found an exponential
decay Instead of the power law behavior. These functional dependenc~s on i
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Fig. 3 Variation of the spin and charge correlations as a function of
position and p. The line types are described in Fig. 2. In both figures
the lowest lying solid and dashed lines, which for the most part are straight
lines, correspondsto ~ = 10. Plotted are the cases for ~ = 10, 30, 50, 70,
and 90.

were also found for the U = O case. The different behaviors are illustrated
in Fig. 4.

4. Summary

We sunsnarizedthe results of a series of quantum Monte Carlo calculations
of the spatial dependence of spin and charge correlations in a one-dimen-
sional, single impurity, symetric Anderson model. We corroborated several
features of [7], and because we achieved lower temperatures, we were able
to identify several additional unusual features in th~ behavior of the cor-
relations as functions of U and ~. Wa also showed the existence of a charge
compensation sum rule and found a powor law d~cay of the correlations at
low temperatures.

To corroborate some of the low temperature behavior discussed here,
carrying the calculation to lower temperatures would be desirable but unfor-
tunately
time a~ LVuld also be Costly.

The procedure describad scales in computer
and on a Cray X-MP/48 for the number sweeps described, the 360

steps to a;hleve P = 90 took around 1J5 minutes. The vectorization achieved
on a Cray computer reduces power in L to something slightly less than 3.
Although slightly less, the raduction in time Is noticeable at low tempera-
tures. Not withstanding this, doubllng ~ would be expensive to do and most
likely be just partly helpful.

Within the parameter and tamporature range discussed hero, there are
other interesting aspacts of the Anderson model that can ba explored. For
tha asynnnetricAnderson model, valenca fluctuation phanomana occur and can
easily be studled and has baen observed with the same program usad for the
synwnetrlcmodel [13]. Orbital degeneracy affects and magnatlc fields can
be added to the model, and as pointed out alsewhare [6,7], more than ona
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Fig. 4 The functional form of the spatial dependence of the spin and charge
correlations at high and lowest temperatures. In the top row the straight
lines, indicative of a exponential, are for ~ = 10; on the bottom row the
straight lines, indicative of a power law, ~ = 90, The line types are
defined in Fig. 2.

impurity can be treated and realistic band structures can be used. Some of
this work is currently underway.
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